알라딘

헤더배너
상품평점 help

분류

이름:이진형

최근작
2023년 6월 <데이터 과학자 원칙>

이진형

데이터에 숨어 있는 인사이트를 찾는 일을 좋아합니다. 11번가에서 데이터 엔지니어와 데이터 과학자 역할 사이에서 판매자와 구매자가 사용하는 개인화 추천 서비스를 제공하기 위해 데이터 파이프라인과 데이터 모델을 개발했습니다. 현재는 카드 혜택 통합 관리 테크핀 스타트업 빅쏠에서 데이터 과학자로 일합니다.

_현) 빅쏠 데이터인사이트팀 리더
_전) 11번가 데이터 과학자
_전) 위세아이텍 데이터 과학자  

대표작
모두보기
저자의 말

<오토케라스로 만드는 AutoML> - 2023년 5월  더보기

머신러닝을 공부하는 사람들이 처음 책을 폈을 때 머신러닝이란 무엇인가, 또는 지도학습과 비지도학습은 무엇인가에 대해 배웠을 것입니다. 딥러닝 책으로 공부를 시작한 분들은 신경망, 미분, 역전파의 개념을 배웠을 것입니다. 개념도 물론 중요하지만 우리가 이러한 공부를 하는 이유는 실무에서 사용하기 위함입니다. 그런데 이런 이론적인 내용만 공부하다 보면 정작 AI를 비즈니스에 적용할 수 있는지 검토하는 데까진 더 오랜 시간이 걸립니다. 그래서 구글, 아마존, 마이크로소프트와 같은 클라우드 플랫폼 회사에서는 머신러닝을 비즈니스에서 빠르게 테스트하고 적용할 수 있도록 Vertex AI, Amazon SageMaker Autopilot, Azure Machine Learning Studio와 같은 AutoML 서비스를 제공하고 있습니다. 클라우드 플랫폼을 활용할 수 있다면 위에서 언급한 서비스를 이용하는 것이 좋습니다. 하지만 온프레미스 환경에서 작업을 해야 한다면 오토케라스가 좋은 대안이 될 수 있습니다. 이 책은 머신러닝 이론에 대해서는 간략하게 소개합니다. 그리고 비즈니스에서 겪는 문제를 분류, 회귀, 감정 분석, 주제 분류 등으로 나눠서 예측 모델을 만드는 방법을 설명합니다. 그리고 머신러닝 학습 과정을 관리하기 위해 머신러닝 파이프라인을 자동화하거나 머신러닝 모델링 과정을 모니터링하고 모델을 배포하는 방법을 다룹니다. 머신러닝과 딥러닝을 많이 경험해보지 못한 비즈니스 전문가, 학생, 개발자, 데이터 분석가분들도 데이터를 이용해 문제를 풀어야 하는 상황이라면 이 책에서 설명하는 오토케라스를 이용해 비즈니스 문제의 답을 빨리 찾을 수 있길 바랍니다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자