알라딘

헤더배너
상품평점 help

분류

이름:스테판 젠슨 (Stefan Jansen)

최근작
2021년 9월 <[세트] 머신러닝 알고리듬 트레이딩 - 전2권>

스테판 젠슨(Stefan Jansen)

어플라이드 에이아이(Applied AI)의 창립자이자 CEO다. 포춘지 선정 500대 기업, 투자 기업 및 업계 전반에서 데이터와 AI 전략에 대해 조언하고, 데이터 과학 팀을 구성하고, 광범위한 비즈니스 문제에 대한 엔드투엔드 머신 학습 솔루션을 개발하고 있다.
이전에는 국제 투자회사의 파트너이자 상무이사를 역임하며 예측 분석 및 투자 연구 업무를 구축했다. 15개 시장에서 영업을 하는 글로벌 핀테크 기업의 고위 임원으로 신흥국 중앙은행에 자문, 세계은행과 상담하기도 했다.
조지아 공대에서 컴퓨터 공학 석사 학위를, 하버드 및 자유 대학교 베를린에서 경제학 석사 학위를 취득했고 CFA 자격증을 보유하고 있다. 유럽, 아시아, 미주 지역에서 6개 언어로 근무했으며 제너럴 어셈블리(General Assembly)와 데이터캠프(Datacamp)에서 데이터 과학을 가르쳤다.  

대표작
모두보기
저자의 말

<퀀트 투자를 위한 머신러닝.딥러닝 알고리듬 트레이딩 2/e> - 2021년 9월  더보기

이 글을 읽고 있다면, 여러분은 아마 투자 산업을 포함한 많은 산업에서 머신러닝(ML)이 전략적인 역량이 됐다는 것을 알고 있을 것이다. ML의 부상과 밀접한 관련이 있는 디지털 데이터의 폭발은 특히 투자에 강력한 영향을 미치고 있으며, 이미 정교한 모델을 사용해 정보를 처리해 온 오랜 역사를 갖고 있다. 이러한 추세는 계량 투자를 새로운 방식으로 접근할 수 있게 만들었으며, 재량적 거래 전략과 알고리즘 거래 전략 모두에 대한 데이터 과학의 수요를 증가시키고 있다. 자산클래스 간 거래 범위는 주식과 국채에서 상품과 부동산에 이르기까지 광범위하다. 이는 매우 광범위한 새로운 대체 데이터 소스가 시장 위와 그 밖의 데이터, 과거에 대부분의 분석 노력의 중심에 있었던 기초 데이터와 관련될 수 있음을 시사한다. 머신러닝이나 데이터 과학을 성공적으로 적용하려면 개인 또는 팀 차원의 통계 지식, 컴퓨터 기술과 도메인 전문 지식이 통합돼야 한다. 다시 말해 올바른 질문을 하고, 답을 제공할 수 있는 데이터를 식별하고 이해하며, 결과를 얻기 위한 광범위한 도구를 배포하고, 올바른 결정을 내리는 방식으로 이를 해석하는 것이 필수다. 따라서 이 책은 머신러닝의 투자 및 트레이딩 영역에 대한 통합적 관점을 제공한다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자