알라딘

헤더배너
상품평점 help

분류

이름:김재민

최근작
2021년 5월 <메이저리그 야구 통계학 2/e>

김재민

미국 미시건주 오클랜드대학교 비즈니스스쿨 경영학과 조교수로 재직 중이다. 학부생과 MBA 학생들을 대상으로 경영전략을 강의하고 있으며 경영전략과 데이터 분석의 교집합을 다루는 마케팅과 비즈니스 전략을 위한 데이터 분석도 강의하고 있다. 경영전략 및 기업의 사회적 책임과 관련된 연구로 「Journal of Business Research」, 「Entrepreneurship Theory & Practice」, 「Journal of Business Ethics」, 「Organization & Environment」 등에 다수의 논문을 실었다. 최근 연구에 자연어 처리를 위한 머신러닝을 분석 방법으로 활용하고 있으며, 10년 이상 개인 블로그(https//blog.naver.com/ibuyworld)에서 연구와 영어 강의에 관한 생각을 공유하고 있다.  

대표작
모두보기
저자의 말

<메이저리그 야구 통계학> - 2018년 6월  더보기

유레카라고 해야 하나? 운명처럼 메이저리그 야구 데이터와 오픈소스 통계 프로그램 R을 동시에 만났을 때, 적절한 시기가 되면 데이터 작업에서 손을 떼야 할 것 같았던 체증이 한 순간에 전광석화처럼 뚫려버렸다. 교수라는 직업으로 생존하기 위해서는 분석을 해야만 했다. 어쩌면 터널이 뚫리기 직전에 그 둘을 만났을지도 모르지만, 만난 이후로는 새로운 세상과 빠르게 연결되고 있음을 느낀다. 각종 매체로부터 쏟아져 나오는 4차 산업혁명이라는 소음에 귀를 막고 있기보다는 자신의 가치를 높일 수 있는 데이터 과학에서 수학과 통계학의 부담감을 내려놓고 메이저리그 야구 데이터를 직접 실험하면서, 모호한 4차 산업혁명을 따라잡기 위한 비즈니스 전략을 가르치는 경영학자의 관점으로 이야기하고 싶어 이 책을 준비했다. 최근에 빅데이터라는 이야기는 지겹게 들었지만 여전히 남의 이야기로 들리고, 지켜만 보다 뒤처지지 않을까라는 고민을 해결할 수 있도록 데이터과학을 메이저리그 이야기와 합쳐서 풀어나간다. 제법 많은 한국인 선수가 활약하고 있어 우리에게 익숙한 메이저리그는 140여 년의 장구한 기간 동안 메이저리거들의 흔적을 데이터로 기록했다. 이러한 데이터를 직접 대면할 때 느끼는 개방성과 거대함, 그리고 정밀함은 데이터 과학에 대한 거침없는 호기심을 불러일으킨다. 특히 수학과 통계학 때문에 데이터과학에 접근하는 데 주저하는 분들에게 이 책이 새로운 통로를 열어줄 터닝포인트가 됐으면 하는 바람이다. 어려서부터 통계에 관심이 있었거나 관련 책을 쓰는 것이 인생의 목표는 아니었다. 박사학위를 마치기 위해 고통받으면서 배웠던 통계지식들이 사라질까 봐, 매번 블로그에 기록으로 남겨놓다 보니 제법 많은 양의 이야깃거리가 됐고, 블로그에 흩어져 있던 내용을 필요한 분들과 나누면 도움이 될 것 같아 책으로 정리했다. 연구과정 생존을 위해 익혔던 분석 방법을 공유하는 만큼 이 책의 첫 번째 수혜자는 석사과정 또는 박사과정 진학을 준비하고 있거나 과정 중에 있는 분들이라 생각한다. 박사과정을 마치고 연구실을 비워줄 때, 끝까지 책상에 꽂혀 있었던 『Rhythms of Academic Life』처럼 박사과정에 진학한 누군가의 책상 위에 놓여 있을 책으로 만들고 싶었다. 두 번째는 직장생활을 하면서 데이터는 쏟아져 나오는데 어떻게 활용할지 모르는 직장인에게 전략적 참고서가 됐으면 한다. 저자가 은행에서 근무하면서 데이터의 가치를 전혀 깨닫지 못하고 살던 적이 있다. 지금 생각해보면 무한으로 생성되던 데이터를 의사결정에 활용하지 않고 주어진 분석결과만 읽으면서 수동적으로 직장생활을 했던 점이 아쉽게 느껴져 과거의 저자와 비슷한 생활을 하고 있을 분들에게 임팩트를 줄 수 있도록 디자인했다. 세 번째는 야구통계가 궁금해서 세이버메트릭스에 관심을 갖기 시작한 분들이 이번 기회에 데이터과학 쪽으로 관심의 폭을 넓히는 데 도움이 됐으면 한다. 사실 야구에서 쏟아져 나오는 선수들의 경기성적 데이터를 현실에 적용하기에는 한계가 있지만, 야구 데이터와 데이터과학의 조합은 야구의 적용범위를 대폭 넓혀준다. 마지막으로 큰 도움을 드릴 수 있는 그룹은 통계 프로그램 언어인 R을 배우려고 마음먹고 있던 분들일 것이다. 최근의 변화를 이끌어가는 사물인터넷, 자율주행 자동차, 인공지능의 큰 트렌드에 동참하려는 분위기가 소셜 네트워크를 통해 전문가를 넘어 일반인들 사이에서도 확산 중이다. 보기 좋게 만들었던 파워포인트의 무의미함에 대한 경고의 목소리가 커지고, 직장인들은 업무를 통해 흘러넘치는 데이터를 정리해놓는 수준에서 벗어나 남들이 보지 못하는 패턴을 모델링해서 대중과 커뮤니케이션하려는 움직임도 명료하게 감지된다. 이러한 과정에서 유튜브와 오픈소스 강의를 통해 자기주도형 학습이 변화를 이끌어가고 있지만, 공개 강의를 따라 잡기 위해 학창시절 보던 수학 정석이나 기초통계 교과서를 다시 열어보다가 모수, 공분산, 임의 변수, 표본오차, 최소좌승법, 최대우도법 같은 단어들이 등장하기 시작하면 내가 갈 길 이 아님을 확인하고 자기주도형 학습을 자기주도로 종료하는 경우가 적지 않다. 명확한 목표 없이 시작하는 데이터 분석에 대한 공부는 참고서를 몇 번 뒤적거리다가 포기하기 쉽다. 학창시절이나 직장에서 분석업무 능력을 키워보려고 통계 공부도 해봤지만 가슴 깊은 곳으로 내려 꽂혔던 기억이 별로 없었다. 특히 통계학 책에서 기업의 제품 불량률, 환자의 혈압수치, 시제품의 효과성, 법률 개정의 효과 등 예제로 사용됐던 내용들이 일상생활과는 동떨어져 데이터가 생산된 배경 자체를 이해하는 것이 어렵다 보니 정작 통계분석을 이해하는 데 방해가 되기도 했다. 배워야 하는 이유는 알았지만, 효과적인 학습에 갈증을 느끼면서 통계를 흥미롭게 가르쳐볼 수 있지 않을까라는 야망을 갖게 됐다. 그리고 바람대로 2016년부터 대학에서 야구 데이터를 이용한 데이터 분석 과목을 강의해 왔고, 2017년부터는 사물인터넷과 빅데이터를 접목한 새로운 과목을 강의하고 있다. 경영학자인 저자가 강의를 준비하면서 얻은 통계와 전략 사이에서 발생하는 교집합을 야구 이야기로 풀어내기 때문에 이론과 숫자가 가득한 무거운 이야기들은 거부한다. 대신에 문제 해결에 대한 논리적 사고, 프로그래밍이라는 손에 잡히는 기술, 통계 메커니즘인 확률이론, 현실의 데이터로 해결모델을 검증하는 과학적 접근방법인 모델링(modeling) 사고에 대한 이야기를 메이저리그 야구를 통해 소개한다. 데이터 분석의 표준이며 무료로 내려받아 사용할 수 있는 통계 프로그래밍 언어 R과 140여 년 이상 축적된 메이저리그 데이터로 이 책의 대부분을 설명하기 때문에 비용 부담 없이 데이터과학에 도전할 수 있다. 이번 기회를 통해 코딩에서 모델링으로 관심을 넓히고, 공식에 숫자를 대입해서 답을 찾는 전통적 공부 방식이 아닌 데이터를 통해 생각을 모델링하는 방식을 통해 데이터과학계의 거대한 축을 담당하고 있는 통계 프로그램 R과 직접 모은 데이터로 가능성을 예측하고 의사결정을 하는 데 도움이 됐으면 한다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자