알라딘

헤더배너
상품평점 help

분류

이름:이기홍

최근작
2022년 2월 <퇴직 연금 전략>

이기홍

카네기멜론대학교에서 석사 학위를 받았고, 피츠버그대학교의 Finance Ph.D, CFA, FRM이자 금융, 투자, 경제분석전문가다. 삼성생명, HSBC, 새마을금고중앙회, 한국투자공사 등과 같은 국내 유수의 금융기관, 금융 공기업에서 자산 운용 포트폴리오 매니저로 근무했으며 현재 딥러닝과 강화학습을 금융에 접목시켜 이를 전파하고 저변을 확대하는 것을 보람으로 삼고 있다. 저서로는 『엑셀 VBA로 쉽게 배우는 금융공학 프로그래밍』(한빛미디어, 2009)이 있으며, 번역서로는 『포트폴리오 성공 운용』(미래에셋투자교육연구소, 2010), 『딥러닝 부트캠프 with 케라스』(길벗, 2017), 『프로그래머를 위한 기초 해석학』(길벗, 2018)과 에이콘출판사에서 출간한 『실용 최적화 알고리즘』(2020), 『초과 수익을 찾아서 2/e』(2020), 『자산운용을 위한 금융 머신러닝』(2021), 『실전 알고리즘 트레이딩 배우기』(2021), 『존 헐의 비즈니스 금융 머신러닝 2/e』(2021), 『퀀트 투자를 위한 머신러닝o딥러닝 알고리듬 트레이딩 2/e』(2021), 『자동머신러닝』(2021), 『금융 머신러닝』(2022) 등이 있다. 누구나 자유롭게 머신러닝과 딥러닝을 자신의 연구나 업무에 적용해 활용하는 그날이 오기를 바라며 매진하고 있다.  

대표작
모두보기
저자의 말

<금융 머신러닝> - 2022년 1월  더보기

금융업에 종사하면서 세계의 많은 석학과 유명 펀드 매니저들을 만났다. 특히 금융 퀀트 부문의 리서처와 매니저들을 접할 수 있는 기회가 있었다. 거듭 느끼는 것이지만 분야를 막론하고 투자 철학이 중요하며 그러한 투자 철학을 갖게 한 경험과 전통이 중요하다는 것을 깨닫는다. 한국인이 (최고로) 잘할 수 있는 분야가 자산 운용, 그중에서도 퀀트 분야라고 생각한다. 자유로이 연구하고 운용할 자원이 부족하며 전통과 경험이 미천하다는 약점 역시 존재한다. 이러한 상황을 타파하고자 독자들이 전통과 경험을 단기간에 뛰어넘기 위한 학습에 도움을 줄 수 있는 '금융 퀀트 머신러닝 융합' 시리즈를 기획했다. 이 시리즈는 세 개의 기둥을 갖는데, 이 책은 그중 마지막 단계이자 세 번째 기둥이 돼 줄 작품이다. 첫 번째 기둥이 스테판 젠슨의 『퀀트 투자를 위한 머신러닝?딥러닝 알고리듬 트레이딩 2/e』이며 두 번째 기둥은 마르코스 로페즈 데 프라도 교수의 『실전 금융 머신러닝 완벽 분석』과 『자산 운용을 위한 금융 머신러닝』이다. 첫 번째 기둥이 일반적인 머신러닝/딥러닝 기법을 금융에 그대로 적용하고자 하는 시도를 담은 책이라면 두 번째 기둥은 머신러닝 자체보다는 머신러닝이 금융에 도입될 때 생겨날 수 있는 많은 문제를 다루며, 머신러닝적 사고를 통해 금융의 특수한 설정을 잘 반영함으로써 금융과 머신러닝의 결합이 더욱 유용할 수 있다는 것을 강조하고 있다. 세 번째 기둥은 오히려 고전적 경제학 및 금융의 입장에서 머신러닝과 딥러닝을 도입해 머신러닝을 오히려 금융적 관점에 해석하고 기존 금융 경제학을 발전시키고자 한다. 많은 머신러닝/딥러닝 및 심지어 물리학 개념이 도입됐음에도 불구하고 오히려 금융 경제학에 뿌리를 두고 있는 독자는 무엇인가 더 친근함을 느낄 것이다. 동시에 기존 금융 경제학이 머신러닝을 반영하면서 이런 방향으로 뻗어나가고 있구나 하는 것을 실감할 수 있을 것이다. 더 나아가서 고전 경제학과 금융이 기반을 두고 있는 물리학과 통계학의 많은 기존 개념 및 최신 이론을 머신러닝에 더욱 가미해서 금융적 맥락에서 성능을 더욱 발휘하게 만든다. 이번 기둥은 그야말로 '통합의 길'을 제시하고 있다. 이 시리즈의 완성본이라고도 할 수 있을 것이다. 기본적인 머신러닝과 딥러닝을 익힌 독자는 이 세 기둥을 통해 진정한 금융 퀀트의 길에 접어든다고 할 수 있다. 너무나 유익하고 재미있는 앞으로의 항로에 기대를 건다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자