디지털 회사의 컨설턴트로, 데이터 사이언스와 인프라스트럭처 엔지니어링 분야의 전문가다. 모바일 게임에서부터 미국 자동차 보험회사인 콘솔 분석에 AAA 관련된 고난도의 문제까지 다뤄왔다.
고급 머신 러닝 기술을 실제 문제에 적용하기 시작하면서 XBox 플랫폼에서 플레이어 모델링 기능과 대규모 데이터 인프라스트럭처를 개발하기 위해 마이크로소프트와 계약을 체결했다. 그가 속한 팀은 엔지니어링, 데이터 과학 분야에서 획기적인 진전을 이루며, 결과물에 대해 Microsoft Studio에서 복제해가기도 했다.
이러한 경험을 통해 결국 존은 새로운 통찰력이나 데이터에 기반을 둔 역량을 추구하는 국내외 고객을 위한 포괄적인 인프라 및 분석 솔루션을 제공하는 컨설턴트가 됐다. 그가 현재 가장 의욕적으로 수행 중인 계약 프로젝트는 주요 소셜 네트워크에 대한 예측 분석 모델을 만들고 사용자들 간의 연결 관계에 대한 중요성을 정량화하는 것이다. 수년간 데이터 작업에 몰두한 결과 존은 끊임없는 질문을 통해 궁금증을 해결하려고 한다. 개인적인 관심사를 충족시키기 위해 파이썬으로 매일매일 ML 솔루션을 개발하고 있다. 여기에는 StyleNet computational creativity 알고리즘의 파생 버전과 algo-trading 및 geolocation 기반의 추천 등을 위한 솔루션이 포함돼 있다.
머신 러닝 커뮤니티는 인기 있는 알고리즘이 정의되고 재발견되면서 트렌드를 파악하기 시작할 정도로 충분히 성숙했다. 이를 좀 더 정확하게 표현하자면 주요 리서치 커뮤니티의 기존 트렌드가 산업계에서 큰 주목을 받기 시작했다는 얘기다. 산업계 및 학계를 아우르는 머신 러닝 전문가 그룹이 되면서 말이다. 또 다른 결과로는 고급 알고리즘에 대한 인식 수준이 점점 높아지고 있다는 점이다. 이를 통해 오늘날 가장 최신의 문제를 해결하는 데 이러한 알고리즘이 사용되기도 한다. 매달 새로운 발전이 이뤄지고, 스코어가 올라가며 문제 해결 영역을 훨씬 더 넓혀가고 있다.
이것이 과연 무엇을 의미하는 걸까 데이터 과학 분야로 진출하고 머신 러닝 스킬셋을 개발하는 데 있어 지금이 가장 좋은 시점이라는 것이다. (클러스터링, 회귀 분석, 모델 신경망 아키텍처 같은) 기본 알고리즘과 툴은 웹 기반 온라인 강의와 각종 블로그 등을 통해 수많은 참고 자료들이 제공되고 있다. (딥러닝, 준지도형 학습 알고리즘, 앙상블 기법 같은) 데이터 과학의 첨단 기술은 여전히 접근이 쉽지 않지만, 기술 자체는 소프트웨어 라이브러리를 통해 여러 종류의 언어로 제공되고 있다. 필요한 것은 분석 모델을 제대로 구현하기 위한 이론적 지식과 실질적인 지침을 잘 결합하는 것이다. 이것이 바로 이 책을 통해 다루고자 하는 목표다.
좀 더 진보한 데이터 모델링 기술의 최신 정보를 얻고, 도전적인 난제를 해결하기 위해 이를 사용해 경험을 얻고자 한다면 이 책이 안성맞춤이라고 할 수 있다!